OLD | NEW |
(Empty) | |
| 1 // Copyright 2013 Google Inc. All rights reserved. |
| 2 // |
| 3 // Redistribution and use in source and binary forms, with or without |
| 4 // modification, are permitted provided that the following conditions are |
| 5 // met: |
| 6 // |
| 7 // * Redistributions of source code must retain the above copyright |
| 8 // notice, this list of conditions and the following disclaimer. |
| 9 // * Redistributions in binary form must reproduce the above |
| 10 // copyright notice, this list of conditions and the following disclaimer |
| 11 // in the documentation and/or other materials provided with the |
| 12 // distribution. |
| 13 // * Neither the name of Google Inc. nor the names of its |
| 14 // contributors may be used to endorse or promote products derived from |
| 15 // this software without specific prior written permission. |
| 16 // |
| 17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 18 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 19 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 20 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 21 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 22 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 23 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 24 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 25 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 26 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 27 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 28 |
| 29 // This contains a suite of tools for transforming symbol information when |
| 30 // when that information has been extracted from a PDB containing OMAP |
| 31 // information. |
| 32 |
| 33 // OMAP information is a lightweight description of a mapping between two |
| 34 // address spaces. It consists of two streams, each of them a vector 2-tuples. |
| 35 // The OMAPTO stream contains tuples of the form |
| 36 // |
| 37 // (RVA in transformed image, RVA in original image) |
| 38 // |
| 39 // while the OMAPFROM stream contains tuples of the form |
| 40 // |
| 41 // (RVA in original image, RVA in transformed image) |
| 42 // |
| 43 // The entries in each vector are sorted by the first value of the tuple, and |
| 44 // the lengths associated with a mapping are implicit as the distance between |
| 45 // two successive addresses in the vector. |
| 46 |
| 47 // Consider a trivial 10-byte function described by the following symbol: |
| 48 // |
| 49 // Function: RVA 0x00001000, length 10, "foo" |
| 50 // |
| 51 // Now consider the same function, but with 5-bytes of instrumentation injected |
| 52 // at offset 5. The OMAP streams describing this would look like: |
| 53 // |
| 54 // OMAPTO : [ [0x00001000, 0x00001000], |
| 55 // [0x00001005, 0xFFFFFFFF], |
| 56 // [0x0000100a, 0x00001005] ] |
| 57 // OMAPFROM: [ [0x00001000, 0x00001000], |
| 58 // [0x00001005, 0x0000100a] ] |
| 59 // |
| 60 // In this case the injected code has been marked as not originating in the |
| 61 // source image, and thus it will have no symbol information at all. However, |
| 62 // the injected code may also be associated with an original address range; |
| 63 // for example, when prepending instrumentation to a basic block the |
| 64 // instrumentation can be labelled as originating from the same source BB such |
| 65 // that symbol resolution will still find the appropriate source code line |
| 66 // number. In this case the OMAP stream would look like: |
| 67 // |
| 68 // OMAPTO : [ [0x00001000, 0x00001000], |
| 69 // [0x00001005, 0x00001005], |
| 70 // [0x0000100a, 0x00001005] ] |
| 71 // OMAPFROM: [ [0x00001000, 0x00001000], |
| 72 // [0x00001005, 0x0000100a] ] |
| 73 // |
| 74 // Suppose we asked DIA to lookup the symbol at location 0x0000100a of the |
| 75 // instrumented image. It would first run this through the OMAPTO table and |
| 76 // translate that address to 0x00001005. It would then lookup the symbol |
| 77 // at that address and return the symbol for the function "foo". This is the |
| 78 // correct result. |
| 79 // |
| 80 // However, if we query DIA for the length and address of the symbol it will |
| 81 // tell us that it has length 10 and is at RVA 0x00001000. The location is |
| 82 // correct, but the length doesn't take into account the 5-bytes of injected |
| 83 // code. Symbol resolution works (starting from an instrumented address, |
| 84 // mapping to an original address, and looking up a symbol), but the symbol |
| 85 // metadata is incorrect. |
| 86 // |
| 87 // If we dump the symbols using DIA they will have their addresses |
| 88 // appropriately transformed and reflect positions in the instrumented image. |
| 89 // However, if we try to do a lookup using those symbols resolution can fail. |
| 90 // For example, the address 0x0000100a will not map to the symbol for "foo", |
| 91 // because DIA tells us it is at location 0x00001000 (correct) with length |
| 92 // 10 (incorrect). The problem is one of order of operations: in this case |
| 93 // we're attempting symbol resolution by looking up an instrumented address |
| 94 // in the table of translated symbols. |
| 95 // |
| 96 // One way to handle this is to dump the OMAP information as part of the |
| 97 // breakpad symbols. This requires the rest of the toolchain to be aware of |
| 98 // OMAP information and to use it when present prior to performing lookup. The |
| 99 // other option is to properly transform the symbols (updating length as well as |
| 100 // position) so that resolution will work as expected for translated addresses. |
| 101 // This is transparent to the rest of the toolchain. |
| 102 |
| 103 #include "common/windows/omap.h" |
| 104 |
| 105 #include <atlbase.h> |
| 106 |
| 107 #include <algorithm> |
| 108 #include <cassert> |
| 109 #include <set> |
| 110 |
| 111 #include "common/windows/dia_util.h" |
| 112 |
| 113 namespace google_breakpad { |
| 114 |
| 115 namespace { |
| 116 |
| 117 static const wchar_t kOmapToDebugStreamName[] = L"OMAPTO"; |
| 118 static const wchar_t kOmapFromDebugStreamName[] = L"OMAPFROM"; |
| 119 |
| 120 // Dependending on where this is used in breakpad we sometimes get min/max from |
| 121 // windef, and other times from algorithm. To get around this we simply |
| 122 // define our own min/max functions. |
| 123 template<typename T> |
| 124 const T& Min(const T& t1, const T& t2) { return t1 < t2 ? t1 : t2; } |
| 125 template<typename T> |
| 126 const T& Max(const T& t1, const T& t2) { return t1 > t2 ? t1 : t2; } |
| 127 |
| 128 // It makes things more readable to have two different OMAP types. We cast |
| 129 // normal OMAPs into these. They must be the same size as the OMAP structure |
| 130 // for this to work, hence the static asserts. |
| 131 struct OmapOrigToTran { |
| 132 DWORD rva_original; |
| 133 DWORD rva_transformed; |
| 134 }; |
| 135 struct OmapTranToOrig { |
| 136 DWORD rva_transformed; |
| 137 DWORD rva_original; |
| 138 }; |
| 139 static_assert(sizeof(OmapOrigToTran) == sizeof(OMAP), |
| 140 "OmapOrigToTran must have same size as OMAP."); |
| 141 static_assert(sizeof(OmapTranToOrig) == sizeof(OMAP), |
| 142 "OmapTranToOrig must have same size as OMAP."); |
| 143 typedef std::vector<OmapOrigToTran> OmapFromTable; |
| 144 typedef std::vector<OmapTranToOrig> OmapToTable; |
| 145 |
| 146 // Used for sorting and searching through a Mapping. |
| 147 bool MappedRangeOriginalLess(const MappedRange& lhs, const MappedRange& rhs) { |
| 148 if (lhs.rva_original < rhs.rva_original) |
| 149 return true; |
| 150 if (lhs.rva_original > rhs.rva_original) |
| 151 return false; |
| 152 return lhs.length < rhs.length; |
| 153 } |
| 154 bool MappedRangeMappedLess(const MappedRange& lhs, const MappedRange& rhs) { |
| 155 if (lhs.rva_transformed < rhs.rva_transformed) |
| 156 return true; |
| 157 if (lhs.rva_transformed > rhs.rva_transformed) |
| 158 return false; |
| 159 return lhs.length < rhs.length; |
| 160 } |
| 161 |
| 162 // Used for searching through the EndpointIndexMap. |
| 163 bool EndpointIndexLess(const EndpointIndex& ei1, const EndpointIndex& ei2) { |
| 164 return ei1.endpoint < ei2.endpoint; |
| 165 } |
| 166 |
| 167 // Finds the debug stream with the given |name| in the given |session|, and |
| 168 // populates |table| with its contents. Casts the data directly into OMAP |
| 169 // structs. |
| 170 bool FindAndLoadOmapTable(const wchar_t* name, |
| 171 IDiaSession* session, |
| 172 OmapTable* table) { |
| 173 assert(name != NULL); |
| 174 assert(session != NULL); |
| 175 assert(table != NULL); |
| 176 |
| 177 CComPtr<IDiaEnumDebugStreamData> stream; |
| 178 if (!FindDebugStream(name, session, &stream)) |
| 179 return false; |
| 180 assert(stream.p != NULL); |
| 181 |
| 182 LONG count = 0; |
| 183 if (FAILED(stream->get_Count(&count))) { |
| 184 fprintf(stderr, "IDiaEnumDebugStreamData::get_Count failed for stream " |
| 185 "\"%ws\"\n", name); |
| 186 return false; |
| 187 } |
| 188 |
| 189 // Get the length of the stream in bytes. |
| 190 DWORD bytes_read = 0; |
| 191 ULONG count_read = 0; |
| 192 if (FAILED(stream->Next(count, 0, &bytes_read, NULL, &count_read))) { |
| 193 fprintf(stderr, "IDiaEnumDebugStreamData::Next failed while reading " |
| 194 "length of stream \"%ws\"\n", name); |
| 195 return false; |
| 196 } |
| 197 |
| 198 // Ensure it's consistent with the OMAP data type. |
| 199 DWORD bytes_expected = count * sizeof(OmapTable::value_type); |
| 200 if (count * sizeof(OmapTable::value_type) != bytes_read) { |
| 201 fprintf(stderr, "DIA debug stream \"%ws\" has an unexpected length", name); |
| 202 return false; |
| 203 } |
| 204 |
| 205 // Read the table. |
| 206 table->resize(count); |
| 207 bytes_read = 0; |
| 208 count_read = 0; |
| 209 if (FAILED(stream->Next(count, bytes_expected, &bytes_read, |
| 210 reinterpret_cast<BYTE*>(&table->at(0)), |
| 211 &count_read))) { |
| 212 fprintf(stderr, "IDiaEnumDebugStreamData::Next failed while reading " |
| 213 "data from stream \"%ws\"\n"); |
| 214 return false; |
| 215 } |
| 216 |
| 217 return true; |
| 218 } |
| 219 |
| 220 // This determines the original image length by looking through the segment |
| 221 // table. |
| 222 bool GetOriginalImageLength(IDiaSession* session, DWORD* image_length) { |
| 223 assert(session != NULL); |
| 224 assert(image_length != NULL); |
| 225 |
| 226 CComPtr<IDiaEnumSegments> enum_segments; |
| 227 if (!FindTable(session, &enum_segments)) |
| 228 return false; |
| 229 assert(enum_segments.p != NULL); |
| 230 |
| 231 DWORD temp_image_length = 0; |
| 232 CComPtr<IDiaSegment> segment; |
| 233 ULONG fetched = 0; |
| 234 while (SUCCEEDED(enum_segments->Next(1, &segment, &fetched)) && |
| 235 fetched == 1) { |
| 236 assert(segment.p != NULL); |
| 237 |
| 238 DWORD rva = 0; |
| 239 DWORD length = 0; |
| 240 DWORD frame = 0; |
| 241 if (FAILED(segment->get_relativeVirtualAddress(&rva)) || |
| 242 FAILED(segment->get_length(&length)) || |
| 243 FAILED(segment->get_frame(&frame))) { |
| 244 fprintf(stderr, "Failed to get basic properties for IDiaSegment\n"); |
| 245 return false; |
| 246 } |
| 247 |
| 248 if (frame > 0) { |
| 249 DWORD segment_end = rva + length; |
| 250 if (segment_end > temp_image_length) |
| 251 temp_image_length = segment_end; |
| 252 } |
| 253 segment.Release(); |
| 254 } |
| 255 |
| 256 *image_length = temp_image_length; |
| 257 return true; |
| 258 } |
| 259 |
| 260 // Detects regions of the original image that have been removed in the |
| 261 // transformed image, and sets the 'removed' property on all mapped ranges |
| 262 // immediately preceding a gap. The mapped ranges must be sorted by |
| 263 // 'rva_original'. |
| 264 void FillInRemovedLengths(Mapping* mapping) { |
| 265 assert(mapping != NULL); |
| 266 |
| 267 // Find and fill gaps. We do this with two sweeps. We first sweep forward |
| 268 // looking for gaps. When we identify a gap we then sweep forward with a |
| 269 // second scan and set the 'removed' property for any intervals that |
| 270 // immediately precede the gap. |
| 271 // |
| 272 // Gaps are typically between two successive intervals, but not always: |
| 273 // |
| 274 // Range 1: --------------- |
| 275 // Range 2: ------- |
| 276 // Range 3: ------------- |
| 277 // Gap : ****** |
| 278 // |
| 279 // In the above example the gap is between range 1 and range 3. A forward |
| 280 // sweep finds the gap, and a second forward sweep identifies that range 1 |
| 281 // immediately precedes the gap and sets its 'removed' property. |
| 282 |
| 283 size_t fill = 0; |
| 284 DWORD rva_front = 0; |
| 285 for (size_t find = 0; find < mapping->size(); ++find) { |
| 286 #ifndef NDEBUG |
| 287 // We expect the mapped ranges to be sorted by 'rva_original'. |
| 288 if (find > 0) { |
| 289 assert(mapping->at(find - 1).rva_original <= |
| 290 mapping->at(find).rva_original); |
| 291 } |
| 292 #endif |
| 293 |
| 294 if (rva_front < mapping->at(find).rva_original) { |
| 295 // We've found a gap. Fill it in by setting the 'removed' property for |
| 296 // any affected intervals. |
| 297 DWORD removed = mapping->at(find).rva_original - rva_front; |
| 298 for (; fill < find; ++fill) { |
| 299 if (mapping->at(fill).rva_original + mapping->at(fill).length != |
| 300 rva_front) { |
| 301 continue; |
| 302 } |
| 303 |
| 304 // This interval ends right where the gap starts. It needs to have its |
| 305 // 'removed' information filled in. |
| 306 mapping->at(fill).removed = removed; |
| 307 } |
| 308 } |
| 309 |
| 310 // Advance the front that indicates the covered portion of the image. |
| 311 rva_front = mapping->at(find).rva_original + mapping->at(find).length; |
| 312 } |
| 313 } |
| 314 |
| 315 // Builds a unified view of the mapping between the original and transformed |
| 316 // image space by merging OMAPTO and OMAPFROM data. |
| 317 void BuildMapping(const OmapData& omap_data, Mapping* mapping) { |
| 318 assert(mapping != NULL); |
| 319 |
| 320 mapping->clear(); |
| 321 |
| 322 if (omap_data.omap_from.empty() || omap_data.omap_to.empty()) |
| 323 return; |
| 324 |
| 325 // The names 'omap_to' and 'omap_from' are awfully confusing, so we make |
| 326 // ourselves more explicit here. This cast is only safe because the underlying |
| 327 // types have the exact same size. |
| 328 const OmapToTable& tran2orig = |
| 329 reinterpret_cast<const OmapToTable&>(omap_data.omap_to); |
| 330 const OmapFromTable& orig2tran = reinterpret_cast<const OmapFromTable&>( |
| 331 omap_data.omap_from); |
| 332 |
| 333 // Handle the range of data at the beginning of the image. This is not usually |
| 334 // specified by the OMAP data. |
| 335 if (tran2orig[0].rva_transformed > 0 && orig2tran[0].rva_original > 0) { |
| 336 DWORD header_transformed = tran2orig[0].rva_transformed; |
| 337 DWORD header_original = orig2tran[0].rva_original; |
| 338 DWORD header = Min(header_transformed, header_original); |
| 339 |
| 340 MappedRange mr = {}; |
| 341 mr.length = header; |
| 342 mr.injected = header_transformed - header; |
| 343 mr.removed = header_original - header; |
| 344 mapping->push_back(mr); |
| 345 } |
| 346 |
| 347 // Convert the implied lengths to explicit lengths, and infer which content |
| 348 // has been injected into the transformed image. Injected content is inferred |
| 349 // as regions of the transformed address space that does not map back to |
| 350 // known valid content in the original image. |
| 351 for (size_t i = 0; i < tran2orig.size(); ++i) { |
| 352 const OmapTranToOrig& o1 = tran2orig[i]; |
| 353 |
| 354 // This maps to content that is outside the original image, thus it |
| 355 // describes injected content. We can skip this entry. |
| 356 if (o1.rva_original >= omap_data.length_original) |
| 357 continue; |
| 358 |
| 359 // Calculate the length of the current OMAP entry. This is implicit as the |
| 360 // distance between successive |rva| values, capped at the end of the |
| 361 // original image. |
| 362 DWORD length = 0; |
| 363 if (i + 1 < tran2orig.size()) { |
| 364 const OmapTranToOrig& o2 = tran2orig[i + 1]; |
| 365 |
| 366 // We expect the table to be sorted by rva_transformed. |
| 367 assert(o1.rva_transformed <= o2.rva_transformed); |
| 368 |
| 369 length = o2.rva_transformed - o1.rva_transformed; |
| 370 if (o1.rva_original + length > omap_data.length_original) { |
| 371 length = omap_data.length_original - o1.rva_original; |
| 372 } |
| 373 } else { |
| 374 length = omap_data.length_original - o1.rva_original; |
| 375 } |
| 376 |
| 377 // Zero-length entries don't describe anything and can be ignored. |
| 378 if (length == 0) |
| 379 continue; |
| 380 |
| 381 // Any gaps in the transformed address-space are due to injected content. |
| 382 if (!mapping->empty()) { |
| 383 MappedRange& prev_mr = mapping->back(); |
| 384 prev_mr.injected += o1.rva_transformed - |
| 385 (prev_mr.rva_transformed + prev_mr.length); |
| 386 } |
| 387 |
| 388 MappedRange mr = {}; |
| 389 mr.rva_original = o1.rva_original; |
| 390 mr.rva_transformed = o1.rva_transformed; |
| 391 mr.length = length; |
| 392 mapping->push_back(mr); |
| 393 } |
| 394 |
| 395 // Sort based on the original image addresses. |
| 396 std::sort(mapping->begin(), mapping->end(), MappedRangeOriginalLess); |
| 397 |
| 398 // Fill in the 'removed' lengths by looking for gaps in the coverage of the |
| 399 // original address space. |
| 400 FillInRemovedLengths(mapping); |
| 401 |
| 402 return; |
| 403 } |
| 404 |
| 405 void BuildEndpointIndexMap(ImageMap* image_map) { |
| 406 assert(image_map != NULL); |
| 407 |
| 408 if (image_map->mapping.size() == 0) |
| 409 return; |
| 410 |
| 411 const Mapping& mapping = image_map->mapping; |
| 412 EndpointIndexMap& eim = image_map->endpoint_index_map; |
| 413 |
| 414 // Get the unique set of interval endpoints. |
| 415 std::set<DWORD> endpoints; |
| 416 for (size_t i = 0; i < mapping.size(); ++i) { |
| 417 endpoints.insert(mapping[i].rva_original); |
| 418 endpoints.insert(mapping[i].rva_original + |
| 419 mapping[i].length + |
| 420 mapping[i].removed); |
| 421 } |
| 422 |
| 423 // Use the endpoints to initialize the secondary search structure for the |
| 424 // mapping. |
| 425 eim.resize(endpoints.size()); |
| 426 std::set<DWORD>::const_iterator it = endpoints.begin(); |
| 427 for (size_t i = 0; it != endpoints.end(); ++it, ++i) { |
| 428 eim[i].endpoint = *it; |
| 429 eim[i].index = mapping.size(); |
| 430 } |
| 431 |
| 432 // For each endpoint we want the smallest index of any interval containing |
| 433 // it. We iterate over the intervals and update the indices associated with |
| 434 // each interval endpoint contained in the current interval. In the general |
| 435 // case of an arbitrary set of intervals this is O(n^2), but the structure of |
| 436 // OMAP data makes this O(n). |
| 437 for (size_t i = 0; i < mapping.size(); ++i) { |
| 438 EndpointIndex ei1 = { mapping[i].rva_original, 0 }; |
| 439 EndpointIndexMap::iterator it1 = std::lower_bound( |
| 440 eim.begin(), eim.end(), ei1, EndpointIndexLess); |
| 441 |
| 442 EndpointIndex ei2 = { mapping[i].rva_original + mapping[i].length + |
| 443 mapping[i].removed, 0 }; |
| 444 EndpointIndexMap::iterator it2 = std::lower_bound( |
| 445 eim.begin(), eim.end(), ei2, EndpointIndexLess); |
| 446 |
| 447 for (; it1 != it2; ++it1) |
| 448 it1->index = Min(i, it1->index); |
| 449 } |
| 450 } |
| 451 |
| 452 // Clips the given mapped range. |
| 453 void ClipMappedRangeOriginal(const AddressRange& clip_range, |
| 454 MappedRange* mapped_range) { |
| 455 assert(mapped_range != NULL); |
| 456 |
| 457 // The clipping range is entirely outside of the mapped range. |
| 458 if (clip_range.end() <= mapped_range->rva_original || |
| 459 mapped_range->rva_original + mapped_range->length + |
| 460 mapped_range->removed <= clip_range.rva) { |
| 461 mapped_range->length = 0; |
| 462 mapped_range->injected = 0; |
| 463 mapped_range->removed = 0; |
| 464 return; |
| 465 } |
| 466 |
| 467 // Clip the left side. |
| 468 if (mapped_range->rva_original < clip_range.rva) { |
| 469 DWORD clip_left = clip_range.rva - mapped_range->rva_original; |
| 470 mapped_range->rva_original += clip_left; |
| 471 mapped_range->rva_transformed += clip_left; |
| 472 |
| 473 if (clip_left > mapped_range->length) { |
| 474 // The left clipping boundary entirely erases the content section of the |
| 475 // range. |
| 476 DWORD trim = clip_left - mapped_range->length; |
| 477 mapped_range->length = 0; |
| 478 mapped_range->injected -= Min(trim, mapped_range->injected); |
| 479 // We know that trim <= mapped_range->remove. |
| 480 mapped_range->removed -= trim; |
| 481 } else { |
| 482 // The left clipping boundary removes some, but not all, of the content. |
| 483 // As such it leaves the removed/injected component intact. |
| 484 mapped_range->length -= clip_left; |
| 485 } |
| 486 } |
| 487 |
| 488 // Clip the right side. |
| 489 DWORD end_original = mapped_range->rva_original + mapped_range->length; |
| 490 if (clip_range.end() < end_original) { |
| 491 // The right clipping boundary lands in the 'content' section of the range, |
| 492 // entirely clearing the injected/removed portion. |
| 493 DWORD clip_right = end_original - clip_range.end(); |
| 494 mapped_range->length -= clip_right; |
| 495 mapped_range->injected = 0; |
| 496 mapped_range->removed = 0; |
| 497 return; |
| 498 } else { |
| 499 // The right clipping boundary is outside of the content, but may affect |
| 500 // the removed/injected portion of the range. |
| 501 DWORD end_removed = end_original + mapped_range->removed; |
| 502 if (clip_range.end() < end_removed) |
| 503 mapped_range->removed = clip_range.end() - end_original; |
| 504 |
| 505 DWORD end_injected = end_original + mapped_range->injected; |
| 506 if (clip_range.end() < end_injected) |
| 507 mapped_range->injected = clip_range.end() - end_original; |
| 508 } |
| 509 |
| 510 return; |
| 511 } |
| 512 |
| 513 } // namespace |
| 514 |
| 515 int AddressRange::Compare(const AddressRange& rhs) const { |
| 516 if (end() <= rhs.rva) |
| 517 return -1; |
| 518 if (rhs.end() <= rva) |
| 519 return 1; |
| 520 return 0; |
| 521 } |
| 522 |
| 523 bool GetOmapDataAndDisableTranslation(IDiaSession* session, |
| 524 OmapData* omap_data) { |
| 525 assert(session != NULL); |
| 526 assert(omap_data != NULL); |
| 527 |
| 528 CComPtr<IDiaAddressMap> address_map; |
| 529 if (FAILED(session->QueryInterface(&address_map))) { |
| 530 fprintf(stderr, "IDiaSession::QueryInterface(IDiaAddressMap) failed\n"); |
| 531 return false; |
| 532 } |
| 533 assert(address_map.p != NULL); |
| 534 |
| 535 BOOL omap_enabled = FALSE; |
| 536 if (FAILED(address_map->get_addressMapEnabled(&omap_enabled))) { |
| 537 fprintf(stderr, "IDiaAddressMap::get_addressMapEnabled failed\n"); |
| 538 return false; |
| 539 } |
| 540 |
| 541 if (!omap_enabled) { |
| 542 // We indicate the non-presence of OMAP data by returning empty tables. |
| 543 omap_data->omap_from.clear(); |
| 544 omap_data->omap_to.clear(); |
| 545 omap_data->length_original = 0; |
| 546 return true; |
| 547 } |
| 548 |
| 549 // OMAP data is present. Disable translation. |
| 550 if (FAILED(address_map->put_addressMapEnabled(FALSE))) { |
| 551 fprintf(stderr, "IDiaAddressMap::put_addressMapEnabled failed\n"); |
| 552 return false; |
| 553 } |
| 554 |
| 555 // Read the OMAP streams. |
| 556 if (!FindAndLoadOmapTable(kOmapFromDebugStreamName, |
| 557 session, |
| 558 &omap_data->omap_from)) { |
| 559 return false; |
| 560 } |
| 561 if (!FindAndLoadOmapTable(kOmapToDebugStreamName, |
| 562 session, |
| 563 &omap_data->omap_to)) { |
| 564 return false; |
| 565 } |
| 566 |
| 567 // Get the lengths of the address spaces. |
| 568 if (!GetOriginalImageLength(session, &omap_data->length_original)) |
| 569 return false; |
| 570 |
| 571 return true; |
| 572 } |
| 573 |
| 574 void BuildImageMap(const OmapData& omap_data, ImageMap* image_map) { |
| 575 assert(image_map != NULL); |
| 576 |
| 577 BuildMapping(omap_data, &image_map->mapping); |
| 578 BuildEndpointIndexMap(image_map); |
| 579 } |
| 580 |
| 581 void MapAddressRange(const ImageMap& image_map, |
| 582 const AddressRange& original_range, |
| 583 AddressRangeVector* mapped_ranges) { |
| 584 assert(mapped_ranges != NULL); |
| 585 |
| 586 const Mapping& map = image_map.mapping; |
| 587 |
| 588 // Handle the trivial case of an empty image_map. This means that there is |
| 589 // no transformation to be applied, and we can simply return the original |
| 590 // range. |
| 591 if (map.empty()) { |
| 592 mapped_ranges->push_back(original_range); |
| 593 return; |
| 594 } |
| 595 |
| 596 // If we get a query of length 0 we need to handle it by using a non-zero |
| 597 // query length. |
| 598 AddressRange query_range(original_range); |
| 599 if (query_range.length == 0) |
| 600 query_range.length = 1; |
| 601 |
| 602 // Find the range of intervals that can potentially intersect our query range. |
| 603 size_t imin = 0; |
| 604 size_t imax = 0; |
| 605 { |
| 606 // The index of the earliest possible range that can affect is us done by |
| 607 // searching through the secondary indexing structure. |
| 608 const EndpointIndexMap& eim = image_map.endpoint_index_map; |
| 609 EndpointIndex q1 = { query_range.rva, 0 }; |
| 610 EndpointIndexMap::const_iterator it1 = std::lower_bound( |
| 611 eim.begin(), eim.end(), q1, EndpointIndexLess); |
| 612 if (it1 == eim.end()) { |
| 613 imin = map.size(); |
| 614 } else { |
| 615 // Backup to find the interval that contains our query point. |
| 616 if (it1 != eim.begin() && query_range.rva < it1->endpoint) |
| 617 --it1; |
| 618 imin = it1->index; |
| 619 } |
| 620 |
| 621 // The first range that can't possibly intersect us is found by searching |
| 622 // through the image map directly as it is already sorted by interval start |
| 623 // point. |
| 624 MappedRange q2 = { query_range.end(), 0 }; |
| 625 Mapping::const_iterator it2 = std::lower_bound( |
| 626 map.begin(), map.end(), q2, MappedRangeOriginalLess); |
| 627 imax = it2 - map.begin(); |
| 628 } |
| 629 |
| 630 // Find all intervals that intersect the query range. |
| 631 Mapping temp_map; |
| 632 for (size_t i = imin; i < imax; ++i) { |
| 633 MappedRange mr = map[i]; |
| 634 ClipMappedRangeOriginal(query_range, &mr); |
| 635 if (mr.length + mr.injected > 0) |
| 636 temp_map.push_back(mr); |
| 637 } |
| 638 |
| 639 // If there are no intersecting ranges then the query range has been removed |
| 640 // from the image in question. |
| 641 if (temp_map.empty()) |
| 642 return; |
| 643 |
| 644 // Sort based on transformed addresses. |
| 645 std::sort(temp_map.begin(), temp_map.end(), MappedRangeMappedLess); |
| 646 |
| 647 // Zero-length queries can't actually be merged. We simply output the set of |
| 648 // unique RVAs that correspond to the query RVA. |
| 649 if (original_range.length == 0) { |
| 650 mapped_ranges->push_back(AddressRange(temp_map[0].rva_transformed, 0)); |
| 651 for (size_t i = 1; i < temp_map.size(); ++i) { |
| 652 if (temp_map[i].rva_transformed > mapped_ranges->back().rva) |
| 653 mapped_ranges->push_back(AddressRange(temp_map[i].rva_transformed, 0)); |
| 654 } |
| 655 return; |
| 656 } |
| 657 |
| 658 // Merge any ranges that are consecutive in the mapped image. We merge over |
| 659 // injected content if it makes ranges contiguous, but we ignore any injected |
| 660 // content at the tail end of a range. This allows us to detect symbols that |
| 661 // have been lengthened by injecting content in the middle. However, it |
| 662 // misses the case where content has been injected at the head or the tail. |
| 663 // The problem is that it doesn't know whether to attribute it to the |
| 664 // preceding or following symbol. It is up to the author of the transform to |
| 665 // output explicit OMAP info in these cases to ensure full coverage of the |
| 666 // transformed address space. |
| 667 DWORD rva_begin = temp_map[0].rva_transformed; |
| 668 DWORD rva_cur_content = rva_begin + temp_map[0].length; |
| 669 DWORD rva_cur_injected = rva_cur_content + temp_map[0].injected; |
| 670 for (size_t i = 1; i < temp_map.size(); ++i) { |
| 671 if (rva_cur_injected < temp_map[i].rva_transformed) { |
| 672 // This marks the end of a continuous range in the image. Output the |
| 673 // current range and start a new one. |
| 674 if (rva_begin < rva_cur_content) { |
| 675 mapped_ranges->push_back( |
| 676 AddressRange(rva_begin, rva_cur_content - rva_begin)); |
| 677 } |
| 678 rva_begin = temp_map[i].rva_transformed; |
| 679 } |
| 680 |
| 681 rva_cur_content = temp_map[i].rva_transformed + temp_map[i].length; |
| 682 rva_cur_injected = rva_cur_content + temp_map[i].injected; |
| 683 } |
| 684 |
| 685 // Output the range in progress. |
| 686 if (rva_begin < rva_cur_content) { |
| 687 mapped_ranges->push_back( |
| 688 AddressRange(rva_begin, rva_cur_content - rva_begin)); |
| 689 } |
| 690 |
| 691 return; |
| 692 } |
| 693 |
| 694 } // namespace google_breakpad |
OLD | NEW |